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Abstract
A harmonic oscillator subject to a parametric pulse is examined. The aim
of the paper is to present a new theory for analysing transitions caused by
parametric pulses. The new theoretical notions which are introduced relate the
pulse parameters in a direct way with transition matrix elements.

The harmonic-oscillator transitions are expressed in terms of the
asymptotic properties of a companion oscillator, the Milne (amplitude)
oscillator. A traditional phase-amplitude decomposition of the harmonic-
oscillator solutions results in the so-called Milne’s equation for the amplitude,
and the phase is determined by an exact relation to the amplitude. This approach
is extended in the present analysis with new relevant concepts and parameters
for pulse dynamics of classical and quantal systems.

The amplitude oscillator has a particularly nice numerical behaviour. In the
case of strong pulses it does not possess any of the fast oscillations induced by
the pulse on the original harmonic oscillator. Furthermore, the new dynamical
parameters introduced in this approach are closely related to the relevant
characteristics of the pulse.

The relevance to quantum mechanical problems such as reflection and
transmission from a localized well and the mechanical problem of controlling
vibrations is illustrated.

PACS numbers: 0365, 4530, 4580, 0545

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

The theory of parametrically excited harmonic oscillators appears in various text in classical
mechanics [1–6] and is also at the heart of quantum mechanics. The typically studied
parametric systems in classical mechanics are subject to periodic excitations due to the frequent
occurrence of rotating machines and interests in the stability of such systems. In quantum
mechanics similar equations refer to electron dynamics in atom lattices or in constant amplitude
periodic external fields.
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In this paper we focus on pulsed parametric excitations of the harmonic oscillator. Similar
situations can be identified for example in (finite-time) manoeuvred flexible multi-body systems
and electronic states subject to pulsed-field excitations. In the context of ‘smart materials’,
parametric control of vibrations is also of interest [6–9]. Often in classical mechanics external
and parametric excitations go together. In this respect we neglect the direct response of the
oscillator and concentrate our analysis on the homogeneous equation.

When designing particular pulses it is of interest to develop a theoretical framework which
closes the gap between pulse parameters and transitions. This will be the main focus of this
paper.

We explore the well known analysis of waves and oscillations in terms of amplitudes and
phases [9–15], in which the nonlinear equation for the amplitude, the Milne equation, will
play a key role. The theoretical result of our amplitude-phase analysis is an exact formalism
with numerical and interpretational advantages compared to straightforward integration of the
parametric oscillator equation. Not only are the computations faster, but the new dynamical
parameters correspond closely to the relevant properties of the parametric pulse such as:
duration, strength, and ‘frequency-pulse area’.

The paper is organized as follows. Section 2 introduces the amplitude-phase
decomposition of the parametric oscillator solutions. We explore the nonlinear Milne equation
for the amplitude function and focus on its properties as t → ±∞. In section 3 we write the
fundamental solutions of the parametric oscillator in terms of the amplitude function and we
investigate its properties as t → ±∞. The important transition matrices for real cos/sin
solutions and propagating complex solutions are derived and discussed in section 4. Section 5
is devoted to a numerical study of a cos2-pulse and conclusions are drawn in section 6.

2. The parametrically pulsed oscillator and the corresponding Milne oscillator

The parametric oscillator can be written as

ẍ + ω2(t)x = 0 (1)

where ω(t)(>0). In this paper we focus on the symmetric functions ω(t), which simplifies
the derivations and further assume the normalized asymptotic limits

ω(t) → 1 as t → ±∞. (2)

This unit limit of the symmetric angular frequency function ω(t) is obtained in general by a
constant scaling of time. The non-constant behaviour of ω(t) is assumed to be sufficiently
localized in time and will be referred to as the pulse.

The standard analysis of the pulse dynamics of the oscillator (1) would be to rewrite the
equation as two first-order equations subject to relevant initial and final linear combinations of
fundamental solutions of the asymptotically ‘free’ harmonic oscillator as t → ±∞. Initially
the parametric oscillator behaves like a harmonic oscillator of unit angular frequency. After
the action of the pulse it again resumes the harmonic-oscillator behaviour with unit frequency,
but the linear combinations of fundamental solutions have changed.

Instead of numerically integrating the original oscillator equations and extracting the
transition properties directly as numbers we propose another approach. Some new theoretical
notions are introduced which relate the pulse parameters in a direct way with the transition
matrix elements. For this purpose an amplitude-phase ansatz for the oscillator solutions are
introduced as

x± = ρ exp(±iθ) (3)
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Figure 1. Two possible amplitude (Milne) solutions for the square-pulse model described in
example 1 with parameters κ = 40, T = 1. The pre-pulse amplitude ρi starts with ρi = 1 at
t = −∞, oscillates in the pulse region and increases to large amplitude oscillations for t > T . The
adiabatic amplitude ρa is constant during the pulse and oscillates between κ±1/2 for |t | > T .

which has to satisfy (1). Inserting (3) into (1) we obtain the amplitude oscillator equation

ρ̈ + ω2(t)ρ = 1

ρ3
(4)

provided the phase satisfies

θ̇ = ρ−2. (5)

Despite its nonlinearity, the differential equation (4) (the so-called Milne equation) can be
solved numerically without any problem. The (real!) solution is typically oscillatory but much
less so than the solutions of equation (1). In particular, the solution has no zeros. Depending
on the initial conditions for ρ and ρ̇, various Milne solutions can be generated. It can be
shown that any solution of the nonlinear differential equation (4) together with (5) generates
a pair of fundamental solutions (3) of (1). To analyse the parametric oscillator behaviour we
typically have three natural choices for the amplitude function: ρi , ρf and ρa . The pre-pulse
amplitude ρi is defined to be asymptotically constant as t → −∞. From (2) and (4) we
obtain the constant limit ρi → 1, as t → −∞. Eventually the pulse excites oscillations in the
amplitude (see figure 1). The post-pulse amplitude ρf is defined to be asymptotically constant
as t → +∞. From (2) and (4) we obtain the constant limit ρf → 1, as t → +∞. In this case
the amplitude has to be oscillatory initially. A third solution ρa can be constructed which is
as slowly varying as possible in the pulse region. This solution will be called the adiabatic
amplitude ρa . An effective and easy way to find initial conditions for such an exact solution
is to look at the simplest approximate solution of Milne’s equation. We simply try to find an
almost ‘constant’ solution ρa and neglect all time derivatives of this solution. Milne’s equation
then reduces to

ρ4
a (t) ≈ 1

ω2(t)
. (6)

This approximation, known as the WKB approximation in context with the quantum
wavefunction [15, 16], is exact only if ω2 is truly constant. The ambition in this paper is
just to find a slowly varying amplitude ρ in the region where the pulse is the largest. However,



3500 K-E Thylwe and H J Korsch

it does not have to be a unique adiabatic solution, but rather one in a family (see a recent
discussion in [17]). The adiabatic solution in this paper is defined by integrating Milne’s
equation from the initial conditions ρ(0) = 1/

√
ω(0) and ρ̇(0) = 0 based on (6). The very

nice properties of the adiabatic amplitude for strong pulses motivates the search for its relation
to the original parametric oscillator.

The formal Hamiltonian governing the dynamics of the Milne solutions is

H(pρ, q, t) = 1
2p

2
ρ + 1

2ω
2(t)ρ2 + 1

2ρ
−2 (7)

where pρ = ρ̇. The energy (7) is constant before and after the pulse and we introduce the
asymptotic energy EM for the asymptotic Milne solutions q

EM = 1
2 q̇

2 + 1
2q

2 + 1
2q

−2. (8)

The asymptotic amplitude oscillator is governed by the particular potential function V (q) =
1
2 (q

2 + q−2) possessing a single minimum at q = 1. In this picture the amplitude energy is
bounded by EM � 1, with the minimum energy attained by the stationary amplitudes q = ρi

and q = ρf , but only in the initial and final asymptotic regions, respectively.
We now seek the particular time dependence for non-stationary asymptotic amplitudes.

Since energy is conserved in the asymptotic regions, it is in fact possible to solve the time
dependence explicitly. To see this, we consider the single second-order differential equation

d2q

dt2
+ q = 1

q3
. (9)

It is instructive to see this geometrically as the radial equation for a two-dimensional
radially symmetric linear oscillator, i.e. with r = (x, y)

d2r

dt2
+ r = 0. (10)

With this view, the amplitude (or radial variable) q is of the form

q =
√
x2(t) + y2(t). (11)

With a suitable shift of the origin of time t the orbit can be made to coincide with the large and
small symmetry axes, rigidly rotated in the x-, y-plane. Then the form simplifies to

q =
√
q2± cos2(t − τ ′) + q2∓ sin2(t − τ ′) (12)

where q± are the turning points of the amplitude oscillator. Solving the turning point equation
(q̇ = 0 in equation (8)) for the asymptotic amplitude motion, we find

q± =
√
EM±

√
E2

M − 1. (13)

A further simplification using trigonometric relations then yields

q(t) =
√
EM ±

√
E2

M − 1 cos(2(t − τ ′)). (14)

A suitable origin t = τ ′ may be chosen conveniently at the larger or smaller turning point with
+ or −, respectively.

We can now describe the asymptotic behaviour of any amplitude on either side of the pulse
region. It may not be possible to find the connections across the pulse region in a nice form,
however. For example, given the pre-pulse amplitude ρi , we are not able to write down the
parameters E

(i)
M and τ ′

i , as t → +∞. On the other hand, if we have found E
(a)
M and τ ′

a for an
adiabatic and symmetric amplitude ρa as t → +∞, then the symmetry requires E

(a)
M and −τ ′

a

as t → −∞.
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Example 1. Let us illustrate the theory for the case of a square pulse

ω = κ (>1) − T < t < T and ω = 1 |t | � T . (15)

The adiabatic amplitude is ρa = 1/
√
κ, −T < t < T , and the asymptotic energy

EM = (1 + κ2)/(2 κ). At t = ±T the amplitude smoothly assumes its asymptotic forms.
It increases from a minimum (at an inner turning point in the potential well) so that τ ′ = T .
For t > T we have

qa(t) =
√
EM −

√
E2

M − 1 cos(2(t − T )). (16)

It is straightforward to verify qa(T ) = 1/
√
κ and also q± = κ±1/2.

We return in the next section to the harmonic oscillator and its asymptotic behaviour.

3. The asymptotic form of the harmonic-oscillator solutions

Any solution of the parametrically pulsed harmonic oscillator is a linear combination of cos t

and sin t , as t → ±∞. In the following we restrict the analysis to symmetric pulses and a
symmetric amplitude function with the asymptotic form:

ρa → qa =
√
EM −

√
E2

M − 1 cos(2(t − τ ′)) t → +∞. (17)

Our amplitude-phase decomposition using an adiabatic symmetric amplitude suggests real
fundamental solutions of the form

C(t) = ρa(t) cos

(∫ t

0
ρ−2
a (t ′) dt ′

)
S(t) = ρa(t) sin

(∫ t

0
ρ−2
a (t ′) dt ′

)
. (18)

To analyse the corresponding asymptotic form as t → +∞, we introduce the phase difference,
α, between exact and asymptotic amplitude forms

α =
∫ +∞

0
(ρ−2

a (t ′) − q−2
a (t ′)) dt ′. (19)

We then get

C(t) → qa(t) cos

(∫ t

0
q−2
a (t ′) dt ′ + α

)
S(t) → qa(t) sin

(∫ t

0
q−2
a (t ′) dt ′ + α

)
. (20)

The evolving phase in these functions is clearly not linear. A symbolic evaluation1 gives∫ t

0
q−2
a (t ′) dt ′ = tan−1

([
EM +

√
EM

2 − 1

]
tan(t − τ ′)

)

+ tan−1

([
EM +

√
EM

2 − 1

]
tan τ ′

)
. (21)

Collecting the additional constant phase appearing in (21) we thus have the asymptotic forms

C(t) → qa(t) cos(φa(t) + � + α) S(t) → qa(t) sin(φa(t) + � + α) (22)

with

φa(t) =
∫ t

τ ′
q−2
a (t ′) dt ′ = tan−1

([
EM +

√
EM

2 − 1

]
tan(t − τ ′)

)
(23)

� =
∫ τ ′

0
q−2
a (t ′) dt ′ = tan−1

([
EM +

√
EM

2 − 1

]
tan(τ ′)

)
. (24)

1 MAPLE: q(t) := sqrt(Em − sqrt(Em∗Em − 1)∗cos(2∗(t − delta))); simplify(combine(int(1/(q(t)∗q(t)), t =
0..T), trig)).
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For the moment we neglect the constant phases and try to simplify the reduced asymptotic
forms

c(t) = qa(t) cosφa(t) s(t) = qa(t) sin φa(t). (25)

A further symbolic analysis reveals

c(t) =
√
EM −

√
E2

M − 1 cos(t − τ ′) (26)

and

s(t) =
√
EM +

√
E2

M − 1 sin(t − τ ′). (27)

The energy factors here are nothing more than the turning point positions. We recall their
definitions

q± =
√
EM ±

√
E2

M − 1. (28)

At this point we can start tracing the relations back to the original real amplitude phase solutions.
From (22) and (25)–(27) we have the matrix relation

lim
t→+∞(C(t), S(t)) = cos(t − τ ′), (sin(t − τ ′))

×
(
q− 0
0 q+

)(
cos(� + α) sin(� + α)

− sin(� + α) cos(� + α)

)
. (29)

This is referred to as the τ ′-dressed representation in the limit t → +∞. In the opposite limit
t → −∞, the symmetry requires

lim
t→−∞(C(t), S(t)) = (cos(t + τ ′), sin(t + τ ′))

×
(
q− 0
0 q+

)
×
(

cos(� + α) − sin(� + α)

sin(� + α) cos(� + α)

)
. (30)

We notice here that the true dynamical phases are τ ′ and α + �.

Example 2. For the case of a square pulse defined in example 1, where τ ′ = T , we can
analytically evaluate the constant phases α and �

α =
∫ T

0

(
κ −

(
EM −

√
E2

M − 1 cos(2(t − T ))

)−1
)

dt = κT − � (31)

with

� = tan−1

([
EM +

√
EM

2 − 1

]
tan(T )

)
. (32)

The turning point positions are

q− =
√
EM −

√
E2

M − 1 = 1/
√
κ q+ =

√
EM +

√
E2

M − 1 = √
κ. (33)

We note that EM +
√
E2

M − 1 is the maximum value (κ) of the square pulse. Furthermore, 2τ ′

is the range (or duration) and 2(α + �) is the area of the square pulse.
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4. Pulse-induced transition matrices

The real transition matrix due to the pulse can now be constructed from the forward- and
backward-connections in the previous section. To simplify the notation we introduce one
symbol for the dynamical phase α + �

δ′ = α + �. (34)

The τ ′-dressed forward- and backward-connections are now defined as matrices

T+ =
(

q− cos δ′ q− sin δ′

−q+ sin δ′ q+ cos δ′

)
(35)

T− =
(
q− cos δ′ −q− sin δ′

q+ sin δ′ q+ cos δ′

)
. (36)

They combine to a τ ′-dressed overall transition

Mτ ′ = T+ T −1
− =

(
cos 2δ′ q2

− sin 2δ′

−q2
+ sin 2δ′ cos 2δ′

)
. (37)

In the evaluations here we have used the fact that q+q− = 1. As a consequence we see that
det Mτ ′ = 1.

The pulse-induced transitions for undressed cos/sin oscillations are then given by the
matrix elements of M , where

M = D(τ ′)Mτ ′D(τ ′) D(τ ′) =
(

cos τ ′ − sin τ ′

sin τ cos τ ′

)
. (38)

In explicit terms we have

M =
(

EM sin τ sin δ + cos τ cos δ EM cos τ sin δ − sin τ cos δ −
√
E2

M − 1 sin δ

−EM cos τ sin δ + sin τ cos δ −
√
E2

M − 1 sin δ EM sin τ sin δ + cos τ cos δ

)

(39)

where τ = 2τ ′ and δ = 2δ′. This is a primary result for transitions of real cos/sin solutions.
We note that the matrix elements are restricted by two conditions det M = 1 and

M11 = M22. Just two real parameters are needed to describe the matrix. In our analysis
we have three parameters EM, δ, τ . The main disadvantage with any choice of dynamical
parameters is a possible lack of monotonicity with respect to pulse parameters. For the square
pulse model (with its two parameters T and κ) we have found a monotonic relation to EM, δ, τ .
An arbitrary parametrization such as

M =
(

a b

(a2 − 1)/b a

)
(40)

would not provide us with the well behaved parameters a and b and in this respect three
parameters are better than two. A more sophisticated parametrization is perhaps

M =
(

cos y cosh x sin y cosh x − sinh x

− sin y cosh x − sinh x cos y cosh x

)
. (41)

Having the square-pulse M matrix as an exact reference we know that the elements contain two
real phases and an amplitude parameter. It is not obvious in the sophisticated parametrization
to see that they are the real and non-oscillating parameters x and y.

Example 3. In analogy with previous examples we can substitute δ = 2κT , τ = 2T , and
EM = (1 + κ2)/(2κ) to find the exact ‘pulse excitation’ matrix M for the square pulse. In
the matrix elements, only δ depends on the strength and the duration of the pulse. In fact, it is
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Figure 2. A cos t oscillation is excited by a square pulse of fixed strength κ = 10.25 but with a
variable duration. The amplitude of the excited oscillation contains slow and fast variations with
‘global’ and ‘local’ maxima, respectively. The amplitude has been reduced by a factor EM for
comparison with our estimate of global Amax.

rather the angular frequency-pulse action (an action integral). Furthermore, EM only depends
on the strength of the pulse, and τ is the pulse duration. If we study large, massive pulses it is
relevant to see δ as the most sensitive dynamical quantity.

Let us analyse the amplitude amplification of a pure cosine oscillation by a strong pulse.
In this context we assume EM  1 and simplify the matrix elements:

M ≈
(

EM sin τ sin δ EM cos τ sin δ − EM sin δ

−EM cos τ sin δ − EM sin δ EM sin τ sin δ

)
. (42)

The first column of the M -matrix gives us the cos/sin sub-amplitudes of the excited oscillation.
We then have the total amplitude of the excited oscillation

A =
√

2EM | sin δ|
√

1 + cos τ . (43)

How large can this amplitude be? Obviously

Amax ≈ 2EM (44)

with the ideal conditions for δ and τ being

| sin δ| ≈ 1 cos τ ≈ 1. (45)

Let us then design a square pulse which gives this large amplitude. The pulse duration can be
taken as τ = 2π , i.e. T = π in our model. Then we solve for a ‘large’ κ in the last equation,
which gives

κ = (2n + 1)/4 n  1. (46)

In figure 2 we show how the exact amplitude (obtained without approximation (42)) of
the excited oscillation depends on the pulse duration τ = 2T with a fixed value of κ (and
EM). We have chosen a value of κ from the estimate above with n = 20 and can confirm that
a ‘global’ (and ‘local’) maximum is located close to T = π . We also see that Amax is close
to our estimate (44). In figure 3 we compare the action of the constructed pulse on a cos t
solution with that of a pulse which has approximately half the duration.
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Figure 3. A cos t oscillation is excited by two parametric square pulses of the same strength
κ = 10.25. (a) Amplification for T = π where the pulse duration is 2π . (b) Quenching for
T = 0.52π .

We conclude this section by discussing the pulse-induced transition matrix for propagating
(complex) oscillations exp(±it). The propagating asymptotic oscillations are linear
combinations of our real cos/sin solutions, i.e.

(exp(it), exp(−it)) = (cos t, sin t)

(
1 1
i −i

)
= (cos t, sin t)C. (47)

Therefore the corresponding complex transition matrix for these solutions is expressed as

P = C−1MC. (48)

Recalling equation (38) we may also write the transition matrix as

P = [
D(−τ ′)C

]−1
Mτ ′D(τ ′)C (49)

or

P =
(

exp(−iτ ′) 0
0 exp(iτ ′)

)
C−1Mτ ′C

(
exp(−iτ ′) 0

0 exp(iτ ′)

)
. (50)

The middle three matrices combine to

Pτ ′ =
(

cos 2δ′ + iEM sin 2δ′ i
√
E2

M − 1 sin 2δ′

−i
√
E2

M − 1 sin 2δ′ cos 2δ′ − iEM sin 2δ′

)
(51)

where

(q2
± + q−2

± )/2 = EM (q2
± − q−2

± )/2 = ±
√
E2

M − 1. (52)

Including the framing matrices and adopting the simplifications δ = 2δ′, τ = 2τ ′ we find

P =
(
(cos δ + iEM sin δ)e−iτ i

√
E2

M − 1 sin δ

−i
√
E2

M − 1 sin δ (cos δ − iEM sin δ)eiτ

)
. (53)

The complex matrix P is particularly suited for quantum mechanical analyses.
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Example 4. In analogy with the previous examples we can, with the identification t = x,
analyse transmission and reflection of quantal waves from a square potential well. Using the
complex transition matrix in (53) we find the boundary conditions

exp(−ix) x → −∞ (54)

(cos δ − iEM sin δ)eiτ exp(−ix) + i
√
E2

M − 1 sin δ exp(ix) x → +∞. (55)

Normalizing the left propagating current in the limit as x → +∞, we find the transmission
and reflection amplitudes

R =
i
√
E2

M − 1 sin δ e−iτ

cos δ − iEM sin δ
(56)

T = e−iτ

cos δ − iEM sin δ
. (57)

In the case of a quantum mechanical square well problem all we have to do are the substitutions
derived in the previous examples. The result is exact.

5. A smooth pulse

We demonstrate some numerical results here for a smooth parameter-pulse of finite range

ω2(t) = 1 + (β2 − 1) cos2

(
πt

2T

)
− T � t � T . (58)

The maximal strength of the frequency pulse is β > 1, which can be compared with the
square-pulse magnitude κ > 1.

We use half the pulse range (i.e. 0 � t � T ) in the calculations of the adiabatic Milne
solution ρa(t). The Milne energy EM is calculated from ρa(T ) and ρ̇a(T ) according to (8).
The dynamical-range parameter τ is obtained from the relation

q̇a(T )qa(T ) =
√
E2

M − 1 sin(2T − τ) (59)

which is easy to verify from the chosen asymptotic form

qa(t) =
√
EM −

√
E2

M − 1 cos(2t − τ). (60)

The dynamical phase shift δ requires a numerical integration of ρ−2
a (t), which can be easily

carried out together with the computation of ρa(t) and ρ̇a(t), and is then obtained from

δ = 2
∫ T

0
ρ−2
a (t) dt − 2 tan−1

([
EM +

√
EM

2 − 1

]
tan(T − τ/2)

)
. (61)

In a first application, we calculate our three dynamical parameters δ, τ , and EM as a
function of the pulse amplitude β in the interval 0 � β � 10. We take T = 1 and obtain the
results shown in the two upper sub-plots of figure 4.

They show a smooth behaviour of δ, τ , and EM, where δ increases almost linearly with β

as for the square pulse. The slope is seen to be considerably smaller. τ is almost independent
of β, which also agrees with the square-pulse case. The Milne energy EM is slightly less linear.
We note that the values of EM are still moderately large for β = 10.

The last sub-plot of figure 4 shows the β dependence of the matrix element M11. The
eigenvalues of the M matrix can be written explicitly in terms of this matrix element

m± = M11 ±
√
M2

11 − 1 m+m− = 1 (62)



Parametrically pulsed oscillator: an amplitude (Milne) approach 3507

0

5

10

15

-1
-0.5

0

0.5
1

1

1.5

2
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

T = 1

EM 

M11 

(a)

(b)

(c)

Figure 4. (a), (b) Numerically calculated behaviour of δ, τ , and EM as functions of β. (c) The
part of the oscillatory matrix element M11 corresponding to regular (non-magnifying) transitions.
T = 1.

where

M11 = EM sin τ sin δ + cos τ cos δ. (63)

M11 can be either positive or negative depending on the phases δ and τ . For the case

|M11| � 1 (64)

the eigenvalues (and eigensolutions) are complex conjugates with |m±| = 1. This is the
typical, regular behaviour if EM(>1) is close to 1, i.e. small values of β in figure 4. As β

(and EM) grows, the regular behaviour will disappear and reoccur depending on the oscillatory
behaviour of M11. At the extreme values M11 = ±1 the eigenvalues become truly real in
intervals that grow as β becomes larger. The real eigenvalues and the possible amplification
effect is related to the largeness of EM. The condition for such intervals is

|M11| > 1. (65)

The larger the values of EM, the wider the range of β where oscillations are possibly amplified.
A very specific oscillation of an eigensolution can in fact be reduced in the same interval of β
while all the others are amplified.

To continue our investigation, we fix the value of the pulse strength to β = 10 and vary
the pulse duration (0 < 2T < 10). The result is shown in figure 5. Here the phases δ and
τ show an almost linear dependence. The Milne energy EM, however, seems to have a clear
peak near the limit of short, ‘sudden’ pulses. We recall here that the square pulse had a value
of EM = (κ2 +1)/(2κ) ≈ 5.05, which is independent of the pulse duration. This value is close
to the limiting peak value in figure 5 of the cos2-pulse.

The matrix element M11 in the last sub-plot of figure 5 has more oscillations than in the
previous plot. Although the Milne energy EM is largest for short pulses, the corresponding
behaviour of M11 is regular and the eigenvalues are of unit magnitude.

Let us finally discuss how to construct a parametric cos2-pulse that minimizes an existing
oscillation in the harmonic oscillator. For this purpose we first try to derive the ideal conditions
in terms of our dynamical parameters EM, δ and τ .
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Figure 5. (a), (b) Numerically calculated behaviour of δ, τ , and EM as functions of 2T . (c) The
part of the oscillatory matrix element M11 corresponding to regular (non-magnifying) transitions.
β = 10.

We require a sufficiently large magnitude of the element M11. It is possible by simple
means to verify that −EM � M11 � EM. The maximum magnitude is attained if

sin τ = ±1 sin δ = ±1 (any combination). (66)

The eigenvalues and the possible magnifications are found to be

(m+, m−) =
(

±
(
EM +

√
E2

M − 1

)
,±

(
EM −

√
E2

M − 1

))
(67)

where the signs go together. The maximal reduction factor |m−| is obtained for the
eigensolution pertaining to m−.

To see which oscillation is the corresponding eigenoscillation for the minimum eigenvalue
we take a second look at the M -matrix. The condition (66) can be optimized if we know that the
shortest possible pulses give the largest Milne energy EM. We may then restrict the condition
to the smallest possible value of τ (the effective pulse-range parameter). Thus our explicit
conditions take the form

τ = π/2 δ = (2n + 1)
π

2
n = 0, 1, . . . . (68)

Inserting (68) into (39), we obtain

M =
( ±EM ∓

√
E2

M − 1

∓
√
E2

M − 1 ±EM

)
(69)

where the signs go together. We realize that the minimum eigenvalue oscillation needs to be
proportional to sin(t + π/4) = (cos t + sin t)/

√
2. Any oscillation of our harmonic oscillator

can be seen as such an eigenoscillation by shifting the time origin, i.e. by a proper timing of
the activation of the pulse. If this can be successfully achieved, we can go on and determine
T and β of the pulse.



Parametrically pulsed oscillator: an amplitude (Milne) approach 3509

Table 1. Numerically calculated sequence of pulse parameters T and β satisfying the reduction
condition (68). The Milne energy EM and the eigenvalue m− for the pulse-induced oscillator
transitions are also given.

n T β EM m−

0 0.5233 0.4224 1.3847 0.427

1 1.3211 3.2073 1.2243 −0.518
2 1.1384 5.8632 1.5583 0.363

3 1.0792 8.5044 1.8413 −0.295
4 1.0329 11.2760 2.1135 0.252

5 1.0068 14.0348 2.3546 −0.223
6 0.9844 16.8630 2.5850 0.201

7 0.9692 19.6827 2.7961 −0.185
8 0.9555 22.5475 2.9990 0.172

9 0.9454 25.4061 3.1886 −0.161
10 0.9360 28.2970 3.3718 0.152

11 0.9286 31.1833 3.5452 −0.144
12 0.9218 34.0941 3.7134 0.137

13 0.9161 37.0012 3.8740 −0.131
14 0.9108 39.9278 4.0304 0.126

15 0.9063 42.8513 4.1808 −0.121
16 0.9020 45.7909 4.3275 0.117

We consider the sequence of solutions of (68) using a two-dimensional Newton root
searching procedure. Hence, we determine numerically the corresponding pulse parameters
which minimize the oscillation. The result is displayed in table 1. The reduction factor |m−|
depends on EM according to equation (67). The Milne energy increases in the sequence and
the reduction factor decreases. The weakest pulse we found in the sequence does not fulfil our
basic requirement β > 1 and is neglected in the discussion. For n = 16 we have |m−| ≈ 0.12
(cf figure 6). We note that the corresponding pulse strength parameter β is quite large and
recall that the amplitude of the cos2-pulse depends quadratically on β. A square-shaped pulse
of the same strength would be much more effective as a reduction tool, since EM does not
decrease with the pulse duration (cf figure 5) but stays at the peak level for all pulse durations.
For a square pulse with the same strength as the cos2-pulse corresponding to n = 16 we would
have |m−| ≈ 0.02.

6. Conclusions

The parametrically pulsed harmonic oscillator undergoes transitions of oscillation modes,
which are interpreted and calculated from a particular, symmetric and well behaved adiabatic
solution of an associated amplitude (Milne) oscillator. Calculations as well as interpretations
of parametric excitations are intuitively powerful in this theoretical model. Three dynamical

quantities EM (where EM +
√
E2

M − 1 is the effective pulse strength), δ (effective phase shift),
and τ (effective pulse duration) are defined in terms of a symmetric and positive solution of
the Milne oscillator. They parametrize the transition matrices while being closely related to
the pulse properties.

A square-pulse model was studied analytically to illustrate the theoretical dynamical
parameters in relation to the pulse parameters of interest here. We also studied a finite-
range cos2-pulse by numerical computations to verify the relevance of the new dynamical
parametrization as a tool in analysing pulse-induced transitions.
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